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Abstract
This paper introduces the Scalable Spontaneous Speech Dataset
(SSSD) project, comprising 727 hours of spontaneous English
conversations between two randomly-matched, anonymous par-
ticipants on Amazon Mechanical Turk (MTurk) crowd-sourcing
platform. The dataset features conversations averaging 25-30
minutes, covering a wide range of everyday topics. A key inno-
vation of this work is our approach to maximizing the number of
MTurk workers concurrently participating in our task, enabling
more effective randomized matching and live two-person con-
versations. Data quality is ensured through a two-tiered task
structure: a qualification round to select reliable workers, fol-
lowed by the main recording sessions. We detail our method-
ology for collecting and recording spontaneous voice conversa-
tions, present analyses of the conversational content and speech
quality of the dataset in comparison to other datasets, and dis-
cuss potential usage.
Index Terms: speech resources, crowdsourcing

1. Introduction
The development of robust and accurate models for speech
recognition [1, 2], synthesis [3], and dialogue systems [4]
heavily relies on high-quality and diverse data. While sev-
eral conversational speech datasets, such as Switchboard [5]
and Fisher [6], there remains a strong need for resources that
feature spontaneous speech in a wider range of settings and
with higher audio fidelity than these traditional telephone-based
narrow-band corpora. Other existing large-scale speech datasets
consist mainly of read speech [7, 8] or speech from formal
settings such as news broadcasts [9], parliament proceedings
[10, 11], limiting their applicability to casual and conversational
speech. Web crawling is another approach to building large au-
dio datasets [12, 13]. However, while these datasets may con-
tain some conversational speech, the proportion is unclear due
to a lack of multi-speaker annotations.

To address these limitations, this paper introduces the Scal-
able Spontaneous Speech Dataset (SSSD)1, a 727 hours spon-
taneous English conversation dataset that covers over 70 topics.
Unlike previous speech datasets, SSSD was collected through
a scalable crowdsourcing approach, where anonymous partic-
ipants were randomly paired for unscripted voice conversa-
tions. Gathering such data presents unique logistical challenges,
particularly when live interaction between participants is re-
quired. Crowdsourcing platforms are optimized for tasks that
can be completed individually and asynchronously. Conduct-
ing live, two-person tasks introduces significant hurdles related
to scheduling, participant matching, and ensuring consistent

1https://wavlab-speech.github.io/SSSD

Table 1: Comparison with other conversational speech datasets
Corpus Speakers Sample

Rate
License Hours

Switchboard [5] 543 8 kHz LDC 260
Fisher [6] 11,917 8 kHz LDC 1,960
CANDOR [15] 1,456 48 kHz By request 850
SSSD 209 48 kHz Permissive 727

engagement. While text-based chat datasets have been con-
structed through crowdsourcing [14], large-scale spoken dia-
logue datasets generated through this method are rare due to
the inherent challenges. Our approach offers a scalable frame-
work for collecting diverse, high-quality conversational speech,
providing the community with a reproducible protocol for im-
plementing this challenging approach. We chose Amazon Me-
chanical Turk (MTurk) for its vast and diverse worker pool, in-
creasing the probability of finding multiple participants avail-
able concurrently. In this paper, we detail our methodology
for collecting and recording spontaneous voice conversations
via crowdsourcing, present analyses of the conversational con-
tent and speech quality of the dataset in comparison to other
datasets, and discuss potential usage of the dataset.

2. Related Work
The primary source of spontaneous conversation speech cor-
pora has been telephone conversations [5, 6, 16]. They have
been invaluable for research on spontaneous speech and are still
widely used, e.g., for the training of state-of-the-art dialogue
models [4]. Beyond these established telephone-based corpora,
more recent datasets have explored different conversational set-
tings and styles, such as games [17], meetings [18, 19, 20],
or radio programs [21]. While our dataset focuses on clean
two-party conversations, other work [22, 23, 24] has exam-
ined multi-party interactions, which are often noisy and involve
more than two participants. CANDOR [15] is another corpus
focusing on naturalistic and unscripted conversations, with a
key focus on multimodality, as opposed to our focus on sim-
ple conversational speech. Synthetic spoken conversation cor-
pora [25, 26] have recently emerged, but they often lack natural
human speech phenomena (disfluencies, backchannels etc.).

SSSD distinguishes itself from prior works by its scalable
crowdsourcing approach and high fidelity (48 kHz) audio, con-
trasting with telephone conversation corpora [5, 6] with 8 kHz
sampling rate. SSSD also features longer conversations aver-
aging 25-30 minutes, which allows for the study of discourse
phenomena over extended periods. Finally, while we provided
predefined topics as conversation starters, participants were al-
lowed to deviate freely, resulting in a broader, more natural
range of conversations. Table 1 highlights key differences be-
tween SSSD and other conversational datasets.



Our data collection method shares similarities with a con-
current work, CASPER [27], in using React-based web appli-
cation with Daily.co for audio capture. However, unlike their
recruitment of participants via emails and flyers, our approach
leverages crowdsourcing, potentially impacting the diversity of
participant demographics and motivation.

3. Dataset Construction
SSSD was collected through a novel crowdsourcing approach
on MTurk. This section outlines the data collection process2.

3.1. User Interface

We use a simple easy-to-use React3 web application to facilitate
and record web-based audio calls. The web app is embedded
within the MTurk environment using an iframe (an HTML ele-
ment that embeds a webpage within another), enabling MTurk
workers to quickly preview the task and begin working without
having to go through a separate signup process on an external
site. The web UI connects to a Firebase Realtime Database,4

which manages user sessions and conversation topics, ensuring
real-time synchronization of data. Additionally, Firebase Cloud
Functions handle server-side logic, such as pairing users anony-
mously and managing session lifecycles. For voice communica-
tion, the system uses the WebRTC-based audio chat APIs pro-
vided by Daily.co.5 The recorded audio is automatically stored
in a private Amazon S36 bucket.

3.2. MTurk Qualification Tests

Before participating in the main recording tasks, all MTurk
workers were required to complete a brief qualification test.
MTurk’s built-in Locale qualification type was used to restrict
participation to the US (a few states were excluded from partic-
ipation due to legal and privacy considerations). The qualifi-
cation test involved a simple voice recording task where work-
ers were instructed to enable their microphone and say a few
random words. This step ensured that all participating workers
had access to a functional microphone, could use the applica-
tion without issues, and could successfully establish WebRTC
calls (which can be affected by restrictive networks, firewalls,
or browser extensions). The recorded audio samples were also
manually reviewed by the research team to filter out workers
with poor audio quality (e.g., excessive background noise, dis-
torted audio). In total, 1,324 workers were approved after suc-
cessfully completing the qualification test.

3.3. Consent and Privacy

Prior to participation, all workers were required to review and
agree to a consent form outlining call recording procedures,
data collection details (including collector identity and dataset
purpose), and our privacy and anonymization measures. To aid
in data categorization, participants could optionally provide de-
mographic information, such as age range and accent type. No
personally identifiable information (PII) was collected beyond
MTurk Worker IDs, which were stored securely and used only
for participant compensation. During recording sessions, the
app clearly indicated that recording was active, and workers

2approved by CMU IRB (STUDY2022 00000291)
3https://react.dev/
4https://firebase.google.com/docs/
5https://docs.daily.co/reference/rest-api
6https://aws.amazon.com/s3/
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Figure 1: System overview for SSSD construction.

were instructed to avoid sharing PII. To further protect privacy,
participants could mute themselves or delete the last 10 seconds
of the recording to remove any inadvertently shared PII. Work-
ers retained full control over their recordings and could choose
to submit or delete them upon completion of the call.

3.4. Main Recording Sessions

An average of four 1-hour recording sessions were held per day,
five days a week. These sessions were strategically scheduled
throughout the day to maximize concurrent user availability and
accommodate all time zones. Worker preferences were regu-
larly polled via a When2meet7 link (using pseudonyms). Work-
ers were notified of upcoming recording sessions via MTurk
notification emails and a shared calendar, and were advised that
their chances of being matched with another worker quickly is
highest at the start of the session. Approved workers could ac-
cept the task through MTurk during the scheduled session win-
dow, with a limit of one call per 1-hour session to minimize
over-representation, but no limit on the number of sessions they
could join. Upon accepting the task, workers were directed to a
virtual waiting room where they were randomly paired with an-
other worker. Once paired, a secure and private audio call is ini-
tiated between the two workers. The conversation was automat-
ically recorded throughout the session. As the approved worker
pool grew during the data collection period, average number of
concurrent call participants also grew from 18 to 41.

7https://www.when2meet.com/
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Figure 2: utterance count per session (SSSD: left, SWBD: right)

3.5. Data Validation and Post-Processing

The audio from each speaker was recorded separately using
Daily.co’s API at a 48-kHz sample rate in WebM (Opus) format,
and securely uploaded to a private Amazon S3 bucket. Record-
ings were transcribed using Whisper-large [1] and checked for
quality using heuristics such as minimum conversation length
(3 min) and minimum words-per-minute rate (40). Flagged
recordings were manually reviewed, and workers were warned
about quality issues. Overall 8.1% of recordings were removed
in this manner. Post-processing steps included redacting or mut-
ing any user-requested portions of the audio. Finally, the two
speakers’ recordings were time-aligned. This involved adding
silence to the beginning of one or both recordings, as neces-
sary, using timing metadata included in the original per-speaker
recordings from Daily.co. The time-aligned recordings were
then combined into a single interleaved stereo file with each
speaker assigned to a separate channel, and encoded as 16-bit
FLAC (lossless format) at 48 kHz.

To detect any remaining PII, we fed the transcriptions into
OpenAI’s GPT-4o [28] (gpt-4o-2024-08-06) with the
following prompt:
Analyze the following transcript and identify
any personally identifiable information (PII)
present. List the PII detected or state
‘No PII found’ (only state this and nothing
else) if none is present. PII includes
names, specific addresses (general location
is OK), phone numbers, and email addresses.
Transcript: {transcript text}.

To validate this approach, we randomly sampled 50 conver-
sations from the dataset and manually reviewed the transcripts.
For the 47 flagged as PII-free, no PII was detected. Among
the 3 flagged as containing PII, only 1 truly contained a poten-
tial PII. This suggests that the method has high recall, which
is desirable here; it may flag some non-PII content, but it reli-
ably identifies potential PII. Recordings predicted to contain PII
were excluded from the dataset (11.7% of the total). We plan to
incorporate these recordings in a future release after eliminating
the specific portions containing PII.

4. Analysis of the Dataset
4.1. Overall Statistics

The dataset comprises of 1,640 audio recordings of two-person
conversations, most fall within the 25-30 minute range, with
a small subset of 243 recordings (14.8% of the total corpus)
having durations between 5-25 minutes.

Since workers were allowed to participate in multiple ses-
sions, individual participation ranged from 1 to 195 instances
(mean = 15.7, median = 1) across the 1,640 total sessions. Par-
ticipant pairing followed a random, first-come-first-served pro-
cess, and since we did not explicitly avoid repeated pairings,
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Figure 3: words per utterance (SSSD: left, SWBD: right)
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Figure 4: Age distribution of the participants.

276 of the 723 unique pairings were observed more than once.
Based on the transcripts of each speaker’s audio obtained

using Whisper-large [1], utterance and word distributions are
calculated (Figures 2 and 3). Figure 2 shows the frequency dis-
tribution of the number of utterances per session. The mean and
standard deviation is 779.0± 241.4. Compared to Switchboard
(80.34± 31.75), SSSD contains a higher number of utterances
per session with a greater variance. Figure 3 shows the fre-
quency distribution of the number of words per utterance in log
scale. Both SSSD and Switchboard roughly show exponential
decay, indicating that shorter utterances are exponentially more
frequent, a common characteristic of conversational speech.

4.2. Speaker Demographics

Demographic information was provided by the majority of par-
ticipants (94.7%). Among these, 94.4% identified their accent
as ”US English”. Of the 209 unique participants, 101 identified
as female, 83 as male, 11 as non-binary or transgender, and 14
declined to disclose their gender. Of the 1,376 conversations
where gender information for both participants was available,
over half (778) were mixed-gender. Age distribution (Figure 4)
peaks in middle age, with a significant number of young adults
also participating, but fewer individuals in older categories.

The released dataset includes pseudonymized participant
IDs per recording, the suggested initial topic, and, if provided,
participant demographic information (age, gender, and accent).

4.3. Conversational Content

Speakers were prompted with 73 diverse everyday topics
but were allowed to deviate freely. We used GPT-4o
(gpt-4o-2024-08-06) to check if conversations matched
their given topic: 43% did; the rest diverged into other casual
topics, reflecting their open-ended nature.

Table 2 presents the semantic quality trends of utterances
in the SSSD dataset. We compare these results with those from
another spoken dialogue corpus, Switchboard, tokenizing the
transcripts using Whisper’s tokenization (“whisper en”) for a
fair comparison. To assess semantic coherence, we compute
perplexity using GPT-2 [29]. The results show that SSSD ut-
terances exhibit lower perplexity, indicating greater semantic
and grammatical coherence than those in Switchboard. Addi-
tionally, following the approach in Dialog GSLM [30, 31], we
compute VERT to evaluate coherence and diversity in system
outputs, along with Self BLEU-2 [32, 33] and Auto BLEU-
2 to measure response diversity across and within utterances.
Our findings indicate that diversity across utterances is higher



Table 2: Linguistic Complexity & Diversity: SSSD vs SWBD

Metric SSSD SWBD

Perplexity (GPT-2) 2069.6 5346.1
Perplexity (GPT-2) (>5 words) 128.8 197.8
Self BLEU-2 30.1 37.5
Auto BLEU-2 1.5 7.2
VERT 6.7 16.4
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Figure 5: Distribution of turn-taking events duration for SSSD
and Switchboard (SWBD) datasets.

in SSSD compared to Switchboard. Notably, the lower Auto
BLEU-2 score suggests fewer repetitions within sentences, re-
flecting more varied and natural responses. These results high-
light that the SSSD dataset contains more coherent and diverse
conversational outputs than prior spoken conversation corpora.

Figure 5 presents the distribution of turn-taking events [31]
duration across SSSD and Switchboard. We observe that SSSD
exhibits overall slightly longer pauses and speaker turns, in-
dicating that each speaker speaks for a longer duration with-
out interruption. In contrast, the durations of IPUs (interpausal
units, i.e., utterances), interruptions, and backchannel responses
are comparable between the two datasets. As expected, the
two datasets are generally comparable in terms of turn-taking
events, as they feature a similar conversational setting.

4.4. Speech Quality

In this section, we compare the audio quality of the SSSD
dataset with the Switchboard Eval2000 subset using multiple
perceptual metrics. Having a substantial corpus of high-quality,
wide-band conversational speech is particularly appealing for
training dialogue systems [4]. Since Eval2000 has a sampling
rate of 8 kHz, we upsample it to 16 kHz for metric calculations.
For a fair comparison, we also analyze a downsampled version
of SSSD (SSSD− in Table 3), which is first downsampled to 8
kHz and then upsampled again to 16 kHz. All metrics are com-
puted using the VERSA toolkit [34]. We use 16 kHz as current
non-intrusive speech quality measures only support such sam-
pling frequency. The evaluation results in Table 3 indicate that
SSSD outperforms Switchboard in terms of quality, intelligibil-
ity, noise robustness, and signal-level clarity. These advantages
are not only due to the narrow-band nature of Switchboard. In
fact, even SSSD− outperforms Switchboard overall. The latter
suffers from potentially more degraded speech as a result of be-
ing based on analog telephone transmissions. We plot the DNS-
MOS histogram for more detailed analyses. As illustrated in
Figure 6, the distribution of DNSMOS in SSSD is left-skewed,
suggesting a rather stable quality of speech in the SSSD dataset.
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Figure 6: Histogram of DNSMOS (P.835) for SSSD utterances.

Table 3: Audio quality comparison between SSSD and Switch-
board Eval2000. SSSD− stands for SSSD that is downsampled
to 8kHz. Details of the metrics are discussed in Sec. 4.4.

Metric SSSD SSSD− Eval2000

DNSMOS (P.835) [36] 2.86 ± 0.41 2.87 ± 0.66 2.57 ± 0.63
UTMOS [37] 2.55 ± 0.72 2.23 ± 0.40 2.20 ± 0.63
SHEET [38] 3.54 ± 0.60 3.51 ± 0.52 2.89 ± 0.78
Squim-STOI [39] 0.94 ± 0.07 0.93 ± 0.08 0.89 ± 0.15
Squim-PESQ [39] 2.61 ± 0.74 2.48 ± 0.71 2.21 ± 0.72
Squim-SI-SDR [39] 15.32 ± 7.08 14.26 ± 7.24 11.90 ± 9.83

Table 4: ASR Performance
ASR Model SWBD WER (↓) CH WER(↓)

OWSM (3.1) 11.3 16.7
S3D finetune (w/ SWBD) 9.5 15.6

We also estimated effective audio bandwidth using the tech-
nique outlined in [35]. Over 50% of SSSD recordings exceed
32 kHz, compared to 25% in CommonVoice.

5. Usage of the Dataset
We explore the potential of our dataset for building robust
speech processing systems. Specifically, we leverage transcripts
obtained from Whisper as pseudo-labels and combine them
with the Switchboard dataset to train an ASR system. Using
this combined dataset, we fine-tune the OWSM 3.1 [40] model
and evaluate its performance on conversational speech, specifi-
cally the Switchboard (SWBD) / Callhome (CH) test sets. Our
approach yields a notable relative improvement of nearly 15.9%
/ 5.4% in WER on SWBD / CH respectively (Table 4), indicat-
ing the effectiveness of our dataset for training ASR systems.

6. Conclusion
This paper introduces SSSD, a valuable new resource compris-
ing 700+ hours of crowdsourced, spontaneous English conver-
sations. SSSD offers several advantages over existing conversa-
tional speech corpora: it features higher-fidelity 48kHz audio
from web-based calls, contrasting with the telephone-quality
audio of datasets like Switchboard and Fisher. The average con-
versation length of 25-30 minutes allows for analysis of dis-
course phenomena over extended periods. Participants were
given 73 pre-defined topics as conversation starters, but were
free to deviate, resulting in a broad range of everyday subjects.
We believe SSSD will be a valuable asset for researchers work-
ing to improve the robustness, naturalness, and overall capabil-
ities of speech-based systems.
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